Pairmute
Richard A. DeVenezia. 15MAR2004
Enumerating all possible rounds that can be considered for combination into a tournament (thanks to James Parmenter).
Consider n = 2m
and items i1…in
that are arranged into m
pairs.
Let xi
be any item in the remaining pool.
Let (x1,x2)
be the first pair. There are n-1 possible first pairs after x1 has been selected. The remaining pool has n-2 items in it.
Let (x3,x4)
be the second pair. There are n-3 possible second pairs after x3 has been selected. The remaining pool has n-4 items in it.
Let (x5,x6)
be the third pair. There are n-5 possible third pairs after x5 has been selected. The remaining pool has n-6 items in it.
…
Let (xn-3,xn-2)
be the (m-1)st pair. There are 3 possible (m-1)st pairs after xn-3 has been selected. The remaining pool has 2 items in it.
Let (xn-1,xn)
be the mth pair. There is only 1 possible mth pair after xn-1 has been selected. The remaining pool has no items in it.
So the number of possible pairwise combinations is the product (n-1)(n-3)(n-5)…(5)(3)(1)
.
PC(m) = ∏ (2m-2i+1); i = 1…m
-or- ∏ (2i-1); i = 1…m
m | n | nC2 | PC(m) |
1 | 2 | 1 | 1 |
2 | 4 | 6 | 3 |
3 | 6 | 15 | 15 |
4 | 8 | 28 | 105 |
5 | 10 | 45 | 945 |
6 | 12 | 66 | 10,395 |
7 | 14 | 91 | 135,135 |
8 | 16 | 120 | 2,027,025 |
9 | 18 | 153 | 34,459,425 |
10 | 20 | 190 | 654,729,075 |
11 | 22 | 231 | 13,749,310,575 |
12 | 24 | 276 | 316,234,143,225 |
PC(m) can also be expressed in the form (2m)! / ( m! 2m )
. This form is found by noticing that PC(m) is n! with every even (there are m of them) factor removed.
Consider upper triangular matrix
P(i,j); i<j; i=1…n-1, j=i+1…n
containing the enumeration 1…m × (n-1)
.
Each
(i,j)
is a pairing between
i
and j
.
P(0,j) = 0
P(i,j) = P(i-1,n) + j - i
Sequence
F = P(i-1,n); i=1…n-1
enumerates the values in the rightmost column
F1 = 0
F2 = n-1
Fi = ∑ (n-k); k=1…i-1
Fi = ∑ n - ∑ k; k=1…i-1
Fi = (i-1)n - (i-1)i/2
Fi = (i-1)(2n - i)/2
Thus
P(i,j) = Fi + j-i = (i-1)(2n - i)/2 + j-i
pairmutations=1, combos per tournament=1
1: items=1,2 pairIds=1
0ms
pairmutations=3, combos per tournament=3
1: items=1,2,3,4 pairIds=1,6
2: items=1,3,2,4 pairIds=2,5
3: items=1,4,3,2 pairIds=3,4
0ms
| 1 | 2 | 3 | 4 | 5 | 6 |
---|
1 | | 1 | 2 | 3 | 4 | 5 |
---|
2 | | | 6 | 7 | 8 | 9 |
---|
3 | | | | 10 | 11 | 12 |
---|
4 | | | | | 13 | 14 |
---|
5 | | | | | | 15 |
---|
6 | | | | | | |
---|
pairmutations=15, combos per tournament=5
1: items=1,2,3,4,5,6 pairIds=1,10,15
2: items=1,2,3,5,4,6 pairIds=1,11,14
3: items=1,2,3,6,5,4 pairIds=1,12,13
4: items=1,3,2,4,5,6 pairIds=2,7,15
5: items=1,3,2,5,4,6 pairIds=2,8,14
6: items=1,3,2,6,5,4 pairIds=2,9,13
7: items=1,4,3,2,5,6 pairIds=3,6,15
8: items=1,4,3,5,2,6 pairIds=3,11,9
9: items=1,4,3,6,5,2 pairIds=3,12,8
10: items=1,5,3,4,2,6 pairIds=4,10,9
11: items=1,5,3,2,4,6 pairIds=4,6,14
12: items=1,5,3,6,2,4 pairIds=4,12,7
13: items=1,6,3,4,5,2 pairIds=5,10,8
14: items=1,6,3,5,4,2 pairIds=5,11,7
15: items=1,6,3,2,5,4 pairIds=5,6,13
0ms
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|
1 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|
2 | | | 8 | 9 | 10 | 11 | 12 | 13 |
---|
3 | | | | 14 | 15 | 16 | 17 | 18 |
---|
4 | | | | | 19 | 20 | 21 | 22 |
---|
5 | | | | | | 23 | 24 | 25 |
---|
6 | | | | | | | 26 | 27 |
---|
7 | | | | | | | | 28 |
---|
8 | | | | | | | | |
---|
pairmutations=105, combos per tournament=7
1: items=1,2,3,4,5,6,7,8 pairIds=1,14,23,28
2: items=1,2,3,4,5,7,6,8 pairIds=1,14,24,27
3: items=1,2,3,4,5,8,7,6 pairIds=1,14,25,26
4: items=1,2,3,5,4,6,7,8 pairIds=1,15,20,28
5: items=1,2,3,5,4,7,6,8 pairIds=1,15,21,27
6: items=1,2,3,5,4,8,7,6 pairIds=1,15,22,26
7: items=1,2,3,6,5,4,7,8 pairIds=1,16,19,28
8: items=1,2,3,6,5,7,4,8 pairIds=1,16,24,22
9: items=1,2,3,6,5,8,7,4 pairIds=1,16,25,21
10: items=1,2,3,7,5,6,4,8 pairIds=1,17,23,22
11: items=1,2,3,7,5,4,6,8 pairIds=1,17,19,27
12: items=1,2,3,7,5,8,4,6 pairIds=1,17,25,20
13: items=1,2,3,8,5,6,7,4 pairIds=1,18,23,21
14: items=1,2,3,8,5,7,6,4 pairIds=1,18,24,20
15: items=1,2,3,8,5,4,7,6 pairIds=1,18,19,26
...
0ms
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|
1 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|
2 | | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|
3 | | | | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
---|
4 | | | | | 25 | 26 | 27 | 28 | 29 | 30 |
---|
5 | | | | | | 31 | 32 | 33 | 34 | 35 |
---|
6 | | | | | | | 36 | 37 | 38 | 39 |
---|
7 | | | | | | | | 40 | 41 | 42 |
---|
8 | | | | | | | | | 43 | 44 |
---|
9 | | | | | | | | | | 45 |
---|
10 | | | | | | | | | | |
---|
pairmutations=945, combos per tournament=9
1: items=1,2,3,4,5,6,7,8,9,10 pairIds=1,18,31,40,45
2: items=1,2,3,4,5,6,7,9,8,10 pairIds=1,18,31,41,44
3: items=1,2,3,4,5,6,7,10,9,8 pairIds=1,18,31,42,43
4: items=1,2,3,4,5,7,6,8,9,10 pairIds=1,18,32,37,45
5: items=1,2,3,4,5,7,6,9,8,10 pairIds=1,18,32,38,44
6: items=1,2,3,4,5,7,6,10,9,8 pairIds=1,18,32,39,43
7: items=1,2,3,4,5,8,7,6,9,10 pairIds=1,18,33,36,45
8: items=1,2,3,4,5,8,7,9,6,10 pairIds=1,18,33,41,39
9: items=1,2,3,4,5,8,7,10,9,6 pairIds=1,18,33,42,38
10: items=1,2,3,4,5,9,7,8,6,10 pairIds=1,18,34,40,39
11: items=1,2,3,4,5,9,7,6,8,10 pairIds=1,18,34,36,44
12: items=1,2,3,4,5,9,7,10,6,8 pairIds=1,18,34,42,37
13: items=1,2,3,4,5,10,7,8,9,6 pairIds=1,18,35,40,38
14: items=1,2,3,4,5,10,7,9,8,6 pairIds=1,18,35,41,37
15: items=1,2,3,4,5,10,7,6,9,8 pairIds=1,18,35,36,43
...
0ms
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|
1 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|
2 | | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
---|
3 | | | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|
4 | | | | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |
---|
5 | | | | | | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
---|
6 | | | | | | | 46 | 47 | 48 | 49 | 50 | 51 |
---|
7 | | | | | | | | 52 | 53 | 54 | 55 | 56 |
---|
8 | | | | | | | | | 57 | 58 | 59 | 60 |
---|
9 | | | | | | | | | | 61 | 62 | 63 |
---|
10 | | | | | | | | | | | 64 | 65 |
---|
11 | | | | | | | | | | | | 66 |
---|
12 | | | | | | | | | | | | |
---|
pairmutations=10395, combos per tournament=11
1: items=1,2,3,4,5,6,7,8,9,10,11,12 pairIds=1,22,39,52,61,66
2: items=1,2,3,4,5,6,7,8,9,11,10,12 pairIds=1,22,39,52,62,65
3: items=1,2,3,4,5,6,7,8,9,12,11,10 pairIds=1,22,39,52,63,64
4: items=1,2,3,4,5,6,7,9,8,10,11,12 pairIds=1,22,39,53,58,66
5: items=1,2,3,4,5,6,7,9,8,11,10,12 pairIds=1,22,39,53,59,65
6: items=1,2,3,4,5,6,7,9,8,12,11,10 pairIds=1,22,39,53,60,64
7: items=1,2,3,4,5,6,7,10,9,8,11,12 pairIds=1,22,39,54,57,66
8: items=1,2,3,4,5,6,7,10,9,11,8,12 pairIds=1,22,39,54,62,60
9: items=1,2,3,4,5,6,7,10,9,12,11,8 pairIds=1,22,39,54,63,59
10: items=1,2,3,4,5,6,7,11,9,10,8,12 pairIds=1,22,39,55,61,60
11: items=1,2,3,4,5,6,7,11,9,8,10,12 pairIds=1,22,39,55,57,65
12: items=1,2,3,4,5,6,7,11,9,12,8,10 pairIds=1,22,39,55,63,58
13: items=1,2,3,4,5,6,7,12,9,10,11,8 pairIds=1,22,39,56,61,59
14: items=1,2,3,4,5,6,7,12,9,11,10,8 pairIds=1,22,39,56,62,58
15: items=1,2,3,4,5,6,7,12,9,8,11,10 pairIds=1,22,39,56,57,64
...
4ms