If there is one group of 6 teams, then it is mathematically impossible to schedule the 15 games (with 5 rounds and 5 rinks) in such a way that each team plays exactly once on each rink. I believe it is also impossible to schedule a group of 5 teams on a 5x5 grid in such a way that teams play at most once on each rink. To get the rink balance to work, then more than 5 rounds are necessary and consequently there would be a number of unused slots in the grid.
If there are 10 teams it may be best not to divide into 2 groups, as it is possible to give everyone 5 different opponents, while playing once on each rink, like this:
(B F) (I G) (J A) (H C) (D E)
(I E) (D A) (H F) (B G) (J C)
(H A) (B C) (D G) (J E) (I F)
(D C) (J F) (B E) (I A) (H G)
(J G) (H E) (I C) (D F) (B A)
8 teams on 5 rinks is also impossible, however 8 teams on 4 rinks and 4 opponents does work. For example:
(A B) (H D) (C F) (G E)
(C E) (G F) (A D) (H B)
(G D) (C B) (H E) (A F)
(H F) (A E) (G B) (C D)
With regard to the unused slots, I mean that I can balance the rinks if allowed extra rounds. This leads both to empty slots and byes.
For example, 6 teams and 8 rounds.
(---) (A F) (---) (B D) (---)
(---) (---) (B F) (---) (D E)
(A E) (---) (---) (---) (---)
(---) (B E) (---) (---) (C F)
(B C) (---) (A D) (---) (---)
(---) (C D) (---) (E F) (---)
(---) (---) (C E) (---) (A B)
(D F) (---) (---) (A C) (---)
It is possible to schedule another group of 6 teams (G to L) in the empty slots to the right of the games above (or in the case of the 5th rink, the empty slot in the 1st rink). So the closest I can come to your original 12 team scenario is:
(---) (A F) (G L) (B D) (H J)
(J K) (---) (B F) (H L) (D E)
(A E) (G K) (---) (---) (---)
(I L) (B E) (H K) (---) (C F)
(B C) (H I) (A D) (G J) (---)
(---) (C D) (I J) (E F) (K L)
(G H) (---) (C E) (I K) (A B)
(D F) (J L) (---) (A C) (G I)