Marcel,
This is not too hard to solve, the schedule below with no travelling between locations should work and can be further divided into 4 locations.
Location 1 Location 2
(A B) (C D) (E F) (G H) (I J) (K L) (M N) (O P)
(A C) (B D) (E G) (F H) (I K) (J L) (M O) (N P)
(A D) (B C) (E H) (F G) (I L) (J K) (M P) (N O)
(C G) (K O) (D H) (L P) (A E) (I M) (B F) (J N)
(C K) (G O) (D L) (H P) (A I) (E M) (B J) (F N)
(C O) (G K) (D P) (H L) (A M) (E I) (B N) (F J)
(I N) (C H) (M J) (G D) (E B) (O L) (A F) (K P)
(I C) (N H) (M G) (J D) (E O) (B L) (A K) (F P)
(I H) (N C) (M D) (J G) (E L) (B O) (A P) (F K)
(A N) (G L) (M B) (K H) (E J) (C P) (I F) (O D)
(A G) (N L) (M K) (B H) (E C) (J P) (I O) (F D)
(A L) (N G) (M H) (B K) (E P) (J C) (I D) (F O)
(M F) (C L) (E N) (K D) (A J) (O H) (I B) (G P)
(M C) (F L) (E K) (N D) (A O) (J H) (I G) (B P)
(M L) (F C) (E D) (N K) (A H) (J O) (I P) (B G)
Essentially it's a version of this social square expanded so each foursome becomes 3 rounds of play.
Ian.