Round Robin Tournament Scheduling

16 team round robin with 12 activities

robjhyndman · 3 · 5890

robjhyndman

  • Newbie
  • *
    • Posts: 2
on: December 08, 2010, 06:42:37 PM
I am organizing a 16-team round robin but with 12 competitive activities. Each round consists of pairs of teams competing in 8 of the 12 activities (one activity per pair). Over 12 rounds, all teams will compete in all activities but meet each other only once or twice.

For example, round 1 might be:
Activity 1: team1 v team16
Activity 2: team2 v team15
Activity 3: team3 v team14
Activity 4: team4 v team13
Activity 7: team5 v team12
Activity 8: team6 v team11
Activity 9: team7 v team10
Activity 10: team8 v team9

Then round 2 might be:

Activity 2: team7 v team8
Activity 3: team1 v team15
Activity 4: team16 v team14
Activity 5: team2 v team13
Activity 8: team3 v team12
Activity 9: team4 v team11
Activity 10: team5 v team10
Activity 11: team6 v team9

I can get up to 7 or 8 rounds but then I can't find a way to avoid a team repeating an activity they have done before.

Any ideas on how to generate the schedule?


Ian Wakeling

  • Forum Moderator
  • God Member
  • *****
    • Posts: 1140
Reply #1 on: December 11, 2010, 10:03:49 AM
I have found the schedule below by computer search and think that it may work for your competition.  The teams are labelled A to P and unfortunately the schedule is not completely balanced as there are four pairs of teams who play twice, these are (E P), (F K), (H M) & (N O).  All other pairs of teams play once or not at all.  All 16 teams should appear once in every column and once in every row, and because of this symmetry, the 12 rows could either be rounds or activities and respectively the 12 columns could either be activities or rounds.

(C N) (---) (F L) (E M) (---) (---) (I K) (---) (H P) (A G) (D O) (B J)
(A J) (B F) (---) (D K) (I P) (---) (---) (M O) (---) (E L) (H N) (C G)
(E I) (G K) (J N) (---) (B D) (F H) (---) (---) (L M) (---) (C P) (A O)
(H L) (A P) (G M) (B I) (---) (C K) (F J) (---) (---) (N O) (---) (D E)
(B K) (J L) (C I) (N P) (H O) (---) (A E) (D G) (---) (---) (F M) (---)
(---) (E H) (A D) (L O) (C M) (B G) (---) (J P) (F K) (---) (---) (I N)
(F O) (---) (B H) (A C) (E N) (I M) (G L) (---) (D J) (K P) (---) (---)
(---) (C O) (---) (H J) (F K) (A N) (D P) (I L) (---) (B M) (E G) (---)
(---) (---) (K O) (---) (G J) (D L) (H M) (B N) (C E) (---) (A I) (F P)
(D M) (---) (---) (F G) (---) (E P) (N O) (C H) (A B) (I J) (---) (K L)
(G P) (M N) (---) (---) (A L) (---) (B C) (E F) (I O) (D H) (J K) (---)
(---) (D I) (E P) (---) (---) (J O) (---) (A K) (G N) (C F) (B L) (H M)


A balanced schedule is called a Howell Design and I believe there will be a mathematical construction where all 96 pairs of teams are different, but unfortunately I don't have access to the relevant literature to confirm this.
 
Hope that helps.
« Last Edit: December 11, 2010, 10:06:41 AM by Ian »


robjhyndman

  • Newbie
  • *
    • Posts: 2
Reply #2 on: December 12, 2010, 10:46:27 PM
That's much better than I found! Thanks for the solution.