Round Robin Tournament Scheduling

20 person euchre tournament. 8 games preferred, but 7 or 9 might work too.

ixb9142 · 3 · 3500

ixb9142

  • Newbie
  • *
    • Posts: 0
Looking to host a tournament. Want to try and move people around as much as possible so everyone hopefully sits at a table with everyone else at least once.


Ian Wakeling

  • Forum Moderator
  • God Member
  • *****
    • Posts: 1140
I don't have a way of making the full schedule that you are looking for.  However, I can make an assignment of the 20 players to 5 tables such that everyone sits at a table with everyone else at least once, and at most twice - so the social mixing aspect is optimal.  You could use this as the basis of a tournament, you just need to assign the tables of 4 to 2 teams of 2.  Hope that is of some help.

(1 4 17 9) (2 12 19 18) (3 8 7 5) (11 10 6 15) (20 14 16 13)
(7 10 14 20) (12 17 2 8) (19 3 9 11) (15 4 5 16) (6 13 18 1)
(13 8 19 14) (10 9 16 17) (1 15 2 3) (4 18 11 7) (12 5 20 6)
(6 17 3 14) (18 9 15 8) (5 11 10 12) (19 20 4 1) (7 16 13 2)
(20 2 5 9) (17 19 15 7) (11 1 14 12) (16 6 8 4) (10 3 13 18)
(17 16 20 11) (9 14 18 5) (2 6 3 19) (8 7 1 10) (4 13 12 15)
(14 15 11 2) (3 20 8 4) (13 5 1 17) (9 12 7 6) (18 19 10 16)
(14 2 4 10) (16 1 12 3) (5 7 6 19) (15 18 17 20) (8 11 9 13)


Ian Wakeling

  • Forum Moderator
  • God Member
  • *****
    • Posts: 1140
I found some old code to improve the schedule above.  Now each table is two-vs-two.

( 1  4 v 17  9) (18 12 v  2 19) ( 3  8 v  5  7) (11 10 v 15  6) (13 14 v 16 20)
( 7 10 v 14 20) ( 8 17 v  2 12) (19  3 v 11  9) (16  4 v  5 15) (18 13 v  1  6)
(13  8 v 14 19) (16  9 v 17 10) ( 2 15 v  1  3) ( 7 18 v  4 11) (12  5 v 20  6)
(14 17 v  3  6) (18  9 v  8 15) (12 11 v  5 10) ( 4 20 v 19  1) (13 16 v  7  2)
( 9  2 v 20  5) ( 7 19 v 15 17) (12  1 v 11 14) (16  6 v  8  4) (13  3 v 10 18)
(17 16 v 11 20) (18 14 v  9  5) (19  6 v  3  2) ( 8  7 v 10  1) (12 13 v  4 15)
(11 15 v  2 14) ( 8 20 v  4  3) (17  5 v  1 13) ( 6 12 v  7  9) (18 19 v 10 16)
( 4  2 v 14 10) (16  1 v  3 12) ( 6  7 v 19  5) (15 18 v 17 20) (13 11 v  8  9)

I believe all partnerships are different, and there are only two repeated opposition pairs (1,17) & (5,6).