Round Robin Tournament Scheduling

24 team game schedule

Chionis · 2 · 8512

Chionis

  • Newbie
  • *
    • Posts: 1
on: March 29, 2012, 06:22:43 AM
Can anyone help me with the following challenge. I am organizing a holiday week for kids and need a schedule for multiple games. We have 24 teams of kids that are going to play 12 different games. Each game will be played by two teams against each other. After 12 rounds all teams should have played each game once, but has never played more then once against another team. So I have tried filling in a 12 by 12 matrix and putting the teams in there, but haven't succeeded so far. Does anyone know if this is even possible?


Ian Wakeling

  • Forum Moderator
  • God Member
  • *****
    • Posts: 1140
Reply #1 on: March 29, 2012, 07:51:51 AM
A solution is possible using two orthogonal Latin Squares.  It would be very hard, I think, to find 12x12 squares like this by filling in a matrix by hand, so I hope you haven't been trying too long.

I have made a suitable schedule below using a mathematical construction, but note that because of the Latin square origin, all games in the schedule are between one team from the group (1 to 12) against one team from the group (13 to 24).  Either you can use this to your advantage if there is a natural division of your 24 teams in to two equal sized groups, or just ignore it and randomly assign your 24 teams to the numbers 1 to 24.

( 1 22) ( 4 20) ( 9 19) ( 5 17) ( 2 23) ( 3 14) ( 6 15) (10 18) (12 16) ( 8 13) (11 21) ( 7 24)
( 2 19) (10 23) ( 4 14) ( 6 22) (11 24) ( 7 20) (12 21) ( 1 13) ( 8 18) ( 3 17) ( 9 15) ( 5 16)
( 5 14) ( 3 19) (12 15) ( 4 24) ( 8 22) (11 13) ( 1 17) ( 6 20) ( 9 21) (10 16) ( 7 23) ( 2 18)
( 6 13) (12 18) ( 7 17) ( 2 15) ( 5 21) ( 4 16) (10 24) ( 8 19) ( 1 23) ( 9 14) ( 3 22) (11 20)
( 8 15) ( 7 16) ( 3 13) (11 14) ( 6 18) ( 9 17) ( 2 22) (12 23) (10 20) ( 1 19) ( 5 24) ( 4 21)
( 3 16) ( 6 17) ( 8 24) ( 1 20) ( 7 13) ( 2 21) ( 9 18) ( 5 15) ( 4 22) (11 23) (12 14) (10 19)
( 4 23) (11 15) ( 2 20) ( 3 18) (10 14) (12 22) ( 7 19) ( 9 24) ( 5 13) ( 6 21) ( 1 16) ( 8 17)
( 7 18) ( 5 22) ( 6 16) ( 9 23) (12 17) (10 15) ( 4 13) ( 3 21) (11 19) ( 2 24) ( 8 20) ( 1 14)
(11 17) ( 9 13) (10 22) ( 7 21) ( 1 15) ( 5 19) ( 8 14) ( 2 16) ( 3 24) (12 20) ( 4 18) ( 6 23)
(10 21) ( 1 24) (11 18) (12 19) ( 9 16) ( 8 23) ( 5 20) ( 4 17) ( 6 14) ( 7 22) ( 2 13) ( 3 15)
( 9 20) ( 2 14) ( 1 21) ( 8 16) ( 4 19) ( 6 24) ( 3 23) (11 22) ( 7 15) ( 5 18) (10 17) (12 13)
(12 24) ( 8 21) ( 5 23) (10 13) ( 3 20) ( 1 18) (11 16) ( 7 14) ( 2 17) ( 4 15) ( 6 19) ( 9 22)