Round Robin Tournament Scheduling

Schedule for 39 people ,in threesome of 19 round?

sezuh · 4 · 7955

sezuh

  • Newbie
  • *
    • Posts: 13
on: December 24, 2012, 11:24:09 AM
Hi IAN,
I am looking for the table that shows the threesome pairings for a total of 39 players, Each player plays with all 38 possible partners exactly once, in 19 round. Is that possible?
thanks and kind regards
Kind regards
sezuh


Ian Wakeling

  • Forum Moderator
  • God Member
  • *****
    • Posts: 1140
Reply #1 on: December 25, 2012, 06:04:12 PM
Yes it's possible -  I believe that I mentioned this in a thread that might be a year or more old now.  Here  is an example:

( 1  2  3) ( 4 10 28) ( 5 11 29) ( 6 12 30) ( 7 16 19) ( 8 17 20) ( 9 18 21) (13 32 39) (14 33 37) (15 31 38) (22 26 36) (23 27 34) (24 25 35)
( 4  5  6) ( 7 13 31) ( 8 14 32) ( 9 15 33) (10 19 22) (11 20 23) (12 21 24) (16 35  3) (17 36  1) (18 34  2) (25 29 39) (26 30 37) (27 28 38)
( 7  8  9) (10 16 34) (11 17 35) (12 18 36) (13 22 25) (14 23 26) (15 24 27) (19 38  6) (20 39  4) (21 37  5) (28 32  3) (29 33  1) (30 31  2)
(10 11 12) (13 19 37) (14 20 38) (15 21 39) (16 25 28) (17 26 29) (18 27 30) (22  2  9) (23  3  7) (24  1  8) (31 35  6) (32 36  4) (33 34  5)
(13 14 15) (16 22  1) (17 23  2) (18 24  3) (19 28 31) (20 29 32) (21 30 33) (25  5 12) (26  6 10) (27  4 11) (34 38  9) (35 39  7) (36 37  8)
(16 17 18) (19 25  4) (20 26  5) (21 27  6) (22 31 34) (23 32 35) (24 33 36) (28  8 15) (29  9 13) (30  7 14) (37  2 12) (38  3 10) (39  1 11)
(19 20 21) (22 28  7) (23 29  8) (24 30  9) (25 34 37) (26 35 38) (27 36 39) (31 11 18) (32 12 16) (33 10 17) ( 1  5 15) ( 2  6 13) ( 3  4 14)
(22 23 24) (25 31 10) (26 32 11) (27 33 12) (28 37  1) (29 38  2) (30 39  3) (34 14 21) (35 15 19) (36 13 20) ( 4  8 18) ( 5  9 16) ( 6  7 17)
(25 26 27) (28 34 13) (29 35 14) (30 36 15) (31  1  4) (32  2  5) (33  3  6) (37 17 24) (38 18 22) (39 16 23) ( 7 11 21) ( 8 12 19) ( 9 10 20)
(28 29 30) (31 37 16) (32 38 17) (33 39 18) (34  4  7) (35  5  8) (36  6  9) ( 1 20 27) ( 2 21 25) ( 3 19 26) (10 14 24) (11 15 22) (12 13 23)
(31 32 33) (34  1 19) (35  2 20) (36  3 21) (37  7 10) (38  8 11) (39  9 12) ( 4 23 30) ( 5 24 28) ( 6 22 29) (13 17 27) (14 18 25) (15 16 26)
(34 35 36) (37  4 22) (38  5 23) (39  6 24) ( 1 10 13) ( 2 11 14) ( 3 12 15) ( 7 26 33) ( 8 27 31) ( 9 25 32) (16 20 30) (17 21 28) (18 19 29)
(37 38 39) ( 1  7 25) ( 2  8 26) ( 3  9 27) ( 4 13 16) ( 5 14 17) ( 6 15 18) (10 29 36) (11 30 34) (12 28 35) (19 23 33) (20 24 31) (21 22 32)
(13 33 38) (16 36  2) (19 39  5) (22  3  8) (25  6 11) (28  9 14) (31 12 17) (34 15 20) (37 18 23) ( 1 21 26) ( 4 24 29) ( 7 27 32) (10 30 35)
(14 31 39) (17 34  3) (20 37  6) (23  1  9) (26  4 12) (29  7 15) (32 10 18) (35 13 21) (38 16 24) ( 2 19 27) ( 5 22 30) ( 8 25 33) (11 28 36)
(15 32 37) (18 35  1) (21 38  4) (24  2  7) (27  5 10) (30  8 13) (33 11 16) (36 14 19) (39 17 22) ( 3 20 25) ( 6 23 28) ( 9 26 31) (12 29 34)
(22 27 35) (25 30 38) (28 33  2) (31 36  5) (34 39  8) (37  3 11) ( 1  6 14) ( 4  9 17) ( 7 12 20) (10 15 23) (13 18 26) (16 21 29) (19 24 32)
(23 25 36) (26 28 39) (29 31  3) (32 34  6) (35 37  9) (38  1 12) ( 2  4 15) ( 5  7 18) ( 8 10 21) (11 13 24) (14 16 27) (17 19 30) (20 22 33)
(24 26 34) (27 29 37) (30 32  1) (33 35  4) (36 38  7) (39  2 10) ( 3  5 13) ( 6  8 16) ( 9 11 19) (12 14 22) (15 17 25) (18 20 28) (21 23 31)


sezuh

  • Newbie
  • *
    • Posts: 13
Reply #2 on: December 26, 2012, 01:19:12 PM
Hi Ian,
thanks ever so much for the wonderful solution..very ....very much appreciated. :)
I thought I saw it in your previous posts, but before I posted this tread, I looked in all the posts with no luck unless I failed to see it????? :-[  
Have a very happy new Year.
sezuh          
Kind regards
sezuh


Ian Wakeling

  • Forum Moderator
  • God Member
  • *****
    • Posts: 1140
Reply #3 on: December 27, 2012, 04:17:00 AM
Hi Sezuh,

Have a look again at this thread.  In particular the comments about having 6i+3 players/girls.  You question was about the possibility of a threesome schedule for 39 players. But the proof of the generalization of Kirkman's Schoolgirl problem, implies the existence of an infinite number of threesome schedules, wherever the number of players is of the form 6i + 3.  So simply setting i=6 answers your question! The wikipedia page on Kirkman's schoolgirls points towards the original literature on the mathematical proof, and more discussion of this can be found in many textbooks on combinatorics.

Regards,

Ian.