Mark,
Here is a schedule that might be useful.
( 9 26 v 32 5) ( 1 8 v 15 7) (17 4 v 31 12) (13 29 v 3 19) (14 20 v 30 10) (21 6 v 11 2)
(28 6 v 29 7) (11 5 v 18 4) (15 13 v 32 24) ( 9 21 v 31 3) (20 23 v 26 2) (19 8 v 25 22)
( 8 21 v 30 27) (26 28 v 1 18) ( 7 31 v 19 14) (17 5 v 13 2) (11 29 v 9 24) (12 16 v 6 25)
( 1 11 v 29 10) (25 9 v 4 23) ( 2 6 v 15 22) ( 3 16 v 26 7) (18 28 v 24 30) (21 14 v 12 32)
(23 22 v 1 27) ( 5 19 v 16 20) (30 15 v 12 7) (26 29 v 17 21) (32 28 v 4 2) (31 8 v 24 10)
( 2 9 v 19 30) (25 12 v 3 11) (27 14 v 6 24) (18 17 v 32 10) (22 28 v 20 31) (29 15 v 5 16)
(32 15 v 23 19) (13 6 v 31 26) ( 5 10 v 3 22) (18 29 v 27 25) ( 1 2 v 14 9) ( 4 8 v 16 17)
(11 8 v 31 23) (13 30 v 25 1) (27 10 v 9 16) ( 4 22 v 14 29) (24 12 v 19 26) (21 20 v 18 15)
(10 6 v 4 19) ( 1 3 v 32 20) (30 11 v 26 27) ( 7 24 v 23 17) (18 22 v 9 12) (28 8 v 13 14)
(17 3 v 1 6) (27 12 v 28 5) (24 20 v 7 4) (16 31 v 2 18) (15 26 v 25 14) (23 10 v 13 21)
(11 19 v 17 28) (25 7 v 5 21) ( 4 20 v 27 13) (30 22 v 32 16) (29 2 v 8 12) (23 18 v 14 3)
(30 5 v 6 23) (27 31 v 25 32) (13 7 v 11 22) ( 3 10 v 15 28) (20 9 v 8 17) ( 1 24 v 21 16)
All the partners are different, and all the opposition pairs are different, but there are about 17 pairs who meet twice. I am sure it's possible to do better, but the problem is that my software is not optimized for this scenario.