Hi Melina,
In the schedule below, I give 9 rounds of play (R1 to R9) with the property that a player's 9 partners and 18 opponents are all different people. So for your tournament you can choose any seven out of the 9 rounds. The schedule also has additional properties. If you label the tables A to K as I have done below, then a player will never play on the same table twice. Finally note the cyclic nature of the 11 matches in each round which you can make good use of. Let's say you divide the 44 players into two teams as follows, players 1-22 in team 1 and players 23-44 in team 2, then every match will be a partnership drawn from team 1 against a partnership from the other team.
There is a zipped Excel file attached with the same schedule.
Hope that helps,
Ian.
Note for golfers: this would work for a society of 44 players playing 9 rounds of foursomes.
Table Match
R1 A [( 9 20) v (27 40)]
B [(10 21) v (28 41)]
C [(11 22) v (29 42)]
D [( 1 12) v (30 43)]
E [( 2 13) v (31 44)]
F [( 3 14) v (32 34)]
G [( 4 15) v (33 35)]
H [( 5 16) v (23 36)]
I [( 6 17) v (24 37)]
J [( 7 18) v (25 38)]
K [( 8 19) v (26 39)]
R2 A [( 5 19) v (28 35)]
B [( 6 20) v (29 36)]
C [( 7 21) v (30 37)]
D [( 8 22) v (31 38)]
E [( 9 12) v (32 39)]
F [(10 13) v (33 40)]
G [(11 14) v (23 41)]
H [( 1 15) v (24 42)]
I [( 2 16) v (25 43)]
J [( 3 17) v (26 44)]
K [( 4 18) v (27 34)]
R3 A [( 8 16) v (32 42)]
B [( 9 17) v (33 43)]
C [(10 18) v (23 44)]
D [(11 19) v (24 34)]
E [( 1 20) v (25 35)]
F [( 2 21) v (26 36)]
G [( 3 22) v (27 37)]
H [( 4 12) v (28 38)]
I [( 5 13) v (29 39)]
J [( 6 14) v (30 40)]
K [( 7 15) v (31 41)]
R4 A [( 3 12) v (25 41)]
B [( 4 13) v (26 42)]
C [( 5 14) v (27 43)]
D [( 6 15) v (28 44)]
E [( 7 16) v (29 34)]
F [( 8 17) v (30 35)]
G [( 9 18) v (31 36)]
H [(10 19) v (32 37)]
I [(11 20) v (33 38)]
J [( 1 21) v (23 39)]
K [( 2 22) v (24 40)]
R5 A [( 2 17) v (23 34)]
B [( 3 18) v (24 35)]
C [( 4 19) v (25 36)]
D [( 5 20) v (26 37)]
E [( 6 21) v (27 38)]
F [( 7 22) v (28 39)]
G [( 8 12) v (29 40)]
H [( 9 13) v (30 41)]
I [(10 14) v (31 42)]
J [(11 15) v (32 43)]
K [( 1 16) v (33 44)]
R6 A [( 7 13) v (24 43)]
B [( 8 14) v (25 44)]
C [( 9 15) v (26 34)]
D [(10 16) v (27 35)]
E [(11 17) v (28 36)]
F [( 1 18) v (29 37)]
G [( 2 19) v (30 38)]
H [( 3 20) v (31 39)]
I [( 4 21) v (32 40)]
J [( 5 22) v (33 41)]
K [( 6 12) v (23 42)]
R7 A [( 6 18) v (33 39)]
B [( 7 19) v (23 40)]
C [( 8 20) v (24 41)]
D [( 9 21) v (25 42)]
E [(10 22) v (26 43)]
F [(11 12) v (27 44)]
G [( 1 13) v (28 34)]
H [( 2 14) v (29 35)]
I [( 3 15) v (30 36)]
J [( 4 16) v (31 37)]
K [( 5 17) v (32 38)]
R8 A [( 4 22) v (30 44)]
B [( 5 12) v (31 34)]
C [( 6 13) v (32 35)]
D [( 7 14) v (33 36)]
E [( 8 15) v (23 37)]
F [( 9 16) v (24 38)]
G [(10 17) v (25 39)]
H [(11 18) v (26 40)]
I [( 1 19) v (27 41)]
J [( 2 20) v (28 42)]
K [( 3 21) v (29 43)]
R9 A [( 1 14) v (26 38)]
B [( 2 15) v (27 39)]
C [( 3 16) v (28 40)]
D [( 4 17) v (29 41)]
E [( 5 18) v (30 42)]
F [( 6 19) v (31 43)]
G [( 7 20) v (32 44)]
H [( 8 21) v (33 34)]
I [( 9 22) v (23 35)]
J [(10 12) v (24 36)]
K [(11 13) v (25 37)]
Note added Dec 1st : An 11 round schedule with the same properties as above is possible. It would be equivalent to 4 mutually orthogonal Latin Squares (MOLS) of size 11.