For several reasons it it best to look for schedules with a multiple of 7 rounds.  The primary motivation is to allow all players to have the same number of games, however it also makes the schedule easier to construct.  So below I give a schedule for 14 rounds of play.  Here the 14 players are numbered 0 to 13.
    Table 1         Table 2          Table 3        Byes
(5 10 : 1 12)  ( 3 13 :  0  9)  ( 6  4 :  7 11)   ( 2  8)
(6 11 : 2 13)  ( 4  7 :  1 10)  ( 0  5 :  8 12)   ( 3  9)
(0 12 : 3  7)  ( 5  8 :  2 11)  ( 1  6 :  9 13)   ( 4 10)
(1 13 : 4  8)  ( 6  9 :  3 12)  ( 2  0 : 10  7)   ( 5 11)
(2  7 : 5  9)  ( 0 10 :  4 13)  ( 3  1 : 11  8)   ( 6 12)
(3  8 : 6 10)  ( 1 11 :  5  7)  ( 4  2 : 12  9)   ( 0 13)
(4  9 : 0 11)  ( 2 12 :  6  8)  ( 5  3 : 13 10)   ( 1  7)
(2  5 : 3  4)  (13 12 :  7  1)  ( 9 11 :  8  0)   (10  6)
(3  6 : 4  5)  ( 7 13 :  8  2)  (10 12 :  9  1)   (11  0)
(4  0 : 5  6)  ( 8  7 :  9  3)  (11 13 : 10  2)   (12  1)
(5  1 : 6  0)  ( 9  8 : 10  4)  (12  7 : 11  3)   (13  2)
(6  2 : 0  1)  (10  9 : 11  5)  (13  8 : 12  4)   ( 7  3)
(0  3 : 1  2)  (11 10 : 12  6)  ( 7  9 : 13  5)   ( 8  4)
(1  4 : 2  3)  (12 11 : 13  0)  ( 8 10 :  7  6)   ( 9  5)
I am sorry that I can't offer a solution to the 11 round problem, however I think you will find it easier to remove 3 rounds from above, rather than trying to add 4 new rounds to the 7 round schedule that you mentioned.  If you can play the full 14 rounds then all players will have 12 different partners and never oppose the same  player more than twice.